离子印迹技术在放射化学领域的应用

梁和乐,陈庆德*,沈兴海*

北京大学 化学与分子工程学院,放射化学与辐射化学重点学科实验室,北京分子科学国家实验室,北京 100871

摘要:离子印迹技术(ion-imprinting technology, IIT)是以某一目标离子为模板,制备对该离子具有强结合能 力和高选择性的功能聚合物,即离子印迹聚合物(ion-imprinted polymers, IIPs)的过程。IIPs 在复杂体系中 分离、富集特定金属离子方面具有独特的优势。放射化学领域涉及许多金属离子分离、富集的问题,其特点是 目标离子浓度非常低、样品成分复杂且带有放射性,IIPs 的特点使其在放射化学领域有很好的应用前景。本 文在简述 IIT 的基本原理和 IIPs 制备方法的基础上,综述了 IIT 在放化分析、海水提铀、低放废液处理等放射 化学领域所取得的进展,涉及的离子有 UO_{2}^{2+} 、 Th^{4+} 、 Sr^{2+} 、 Cs^{+} 、 ZrO^{2+} 和镧系金属离子。最后,本文还对 IIT 在放射化学领域更广泛的应用进行了分析和展望。

关键词:离子印迹技术;离子印迹聚合物;放射化学;金属离子分离 中图分类号:O615 文献标志码:A 文章编号:0253-9950(2016)03-0129-16 doi:10.7538/hhx.2016.38.03.0129

Application of Ion-Imprinting Technology in the Field of Radiochemistry

LIANG He-le, CHEN Qing-de*, SHEN Xing-hai*

Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Abstract: Ion-imprinting technology (IIT) is a process to synthesize functional polymers, i. e. ion-imprinted polymers(IIPs), using specific ions as templates. Because of the strong affinities and high selectivities towards the template ions, IIPs have outstanding advantages in the preconcentration and separation of ions in complicated environments and attract much attention. In the field of radiochemistry, there are also many problems about the preconcentration and separation of metal ions, where the concentration of target ions is very low and the composition of radioactive samples is very complicated. Therefore, IIPs will be widely applied in this field for their outstanding advantages. After the brief introduction of the principle of IIT and the synthetic methods of IIPs, this article reviewed the previous achievements of IIT in the field of radiochemistry (e. g., radiochemical analysis, extraction of urani-

收稿日期:2015-02-07;修订日期:2015-10-12

基金项目:国家自然科学基金资助项目(91226112,20871009)

作者简介:梁和乐(1991—),男,河北石家庄人,博士研究生,超分子化学与核燃料化学专业

^{*} 通信联系人:陈庆德(1974—),男,湖南永州人,副教授,博士生导师,从事超分子化学与核燃料化学研究,E-mail: qdchen@pku.edu.cn; 沈兴海(1965—),男,江苏苏州人,教授,博士生导师,从事超分子化学与核燃料化学研究,E-mail: xshen@pku.edu.cn

um from seawater, treatment of low level radioactive waste), where the template ions included $UO_2^{2^+}$, Th^{4^+} , Sr^{2^+} , Cs^+ , ZrO^{2^+} , and lanthanide ions. Besides, the perspectives of IIT in the field of radiochemistry are also presented.

Key words: ion-imprinting technology; ion-imprinted polymers; radiochemistry; separation of metal ions

离子印迹技术(ion-imprinting technology, IIT)是以某一目标离子为模板,制备对该离子具 有特异选择性的功能聚合物的过程,是分子印迹 技术的一个重要分支。离子印迹聚合物(ionimprinted polymers, IIPs)因对模板离子具有高 选择性和强结合能力而备受关注。同时,IIPs还 具有制备简单、力学性能好、化学性质稳定等优 点。因此,IIPs已开始用于过渡金属离子、稀土金 属离子等的选择性富集分离和分析检测。目前, 国内外已有一些综述,介绍上述 IIPs 的合成、性 能及应用^[1-3]。

放射化学领域中涉及到许多离子分离、富集 的问题,其特点是目标离子浓度低、样品成分复杂 且带有放射性。针对放射化学中涉及到的 UO²⁺、Th⁴⁺、Sr²⁺、Cs⁺、ZrO²⁺和镧系金属离子, 已有较多工作制备出了相应的 IIPs,并研究了其 性能。本文在简要介绍 IIT 的基本原理和 IIPs 制备方法的基础上,综述了 IIPs 在放化分析、海 水提铀、低放废液处理等放射化学领域应用的研 究进展,并对 IIT 在放射化学领域更广泛的应用 进行了展望。

1 IIT 的基本原理

分子印迹技术起源于免疫学,Pauling 等^[4]在 20 世纪 40 年代提出的抗体形成假说可以看作分 子印迹产生的理论基础;1972 年,Wulff 等^[5]首次 合成分子印迹聚合物;1993 年 Vlatakis 等^[6]关于茶 碱分子印迹聚合物的研究引起了人们的广泛关注。 IIT 是分子印迹技术的一个重要分支。1976 年, Nishide 等^[7]在 Cu^{2+} 、 Zn^{2+} 、 Co^{2+} 分别存在的情况下, 用 1,4-二溴丁烷交联聚 4-乙烯基吡啶,实现了对模 板离子的识别,这可以看做是 IIT 的首次尝试。

IIPs 是一种具有离子识别功能的、可设计的 功能高分子材料。以目标离子 Mⁿ⁺为模板,用功 能单体与其配位,并与交联剂共聚得到交联聚合 物,然后再将模板离子 Mⁿ⁺洗脱得到 IIPs。所得 聚合物通过尺寸匹配效应和化学作用位点的配位 作用对模板离子产生特异性识别和结合,因而可 将 Mⁿ⁺ 从与它相近离子的混合溶液中富集、分离 出来(图 1^[8])。

图 1 离子印迹技术示意图^[8] Fig. 1 Schematic illustration of ion-imprinting technology^[8]

IIPs 的常规制备过程如下^[9]:

(1)模板离子与功能单体形成配合物,功能 单体可以是可聚合配体,可以是嵌入配体(即与金 属离子配位但不参与聚合的配体)与可聚合配体 的组合,也可以是聚合物上的配位基团;

(2)配合物与交联剂发生聚合反应,聚合方 式有:原位聚合、悬浮聚合、沉淀聚合等;

(3) 使用适当的溶液把模板离子洗脱下来;

(4) 对制得的 IIPs 进行干燥、研磨等后处理。

非印迹聚合物 (non-imprinted polymers, NIPs)通常用来作为对比,除不加模板离子外,其制 备过程与 IIPs 完全相同。用来表征 IIPs 印迹效果 的指标通常为对模板离子的选择系数(k)和印迹系 数(k')。选择系数为 IIPs 对模板离子和另一离子的 吸附分配系数(K_d)之比。印迹系数为 IIPs 和 NIPs 对模板离子的选择系数之比,即 $k' = k_{IIPs}/k_{NIPs}$ 。

2 IIPs 的制备方法

2.1 常规法

利用可聚合配体与金属离子形成配合物,然 后与交联剂共聚,是最常用的制备 IIPs 的方 法^[10-11](实例详见下文图 7、8)。对于常规法合成

图 2 市观公中用到的功能丰裕

近年来,溶胶-凝胶法越来越多地应用于 IIPs 的合成。该方法是用含有配位基团(如氨基)的硅 胶前体与模板离子进行配位,然后凝胶化制得离 子印迹硅胶,其本质也属于常规法。Sadeghi 等^[12]在 UO₂²⁺存在下,用 3-氨丙基三甲氧基硅烷 (APS)进行凝胶化,并在过程中加入包覆有硅胶 的磁性 Fe₃O₄,从而制得 UO₂²⁺-IIP 磁性凝胶。此 IIP 对于 UO₂²⁺/Th⁴⁺、UO₂²⁺/La³⁺和 UO₂²⁺/Fe³⁺ 的选择系数分别为 2.5、238.5 和 18.5,对加标 20 μ g/L UO₂²⁺ 的地下水和采矿废水中铀的回收 率大于 89%。在溶胶-凝胶法制备中,具有配位 基团的硅胶前体的作用很关键。Li 等^[13]在 Sr²⁺ 存在下仅用原硅酸四乙酯(TEOS)进行凝胶化, 所得硅胶不能很好地分离 Sr²⁺、Ca²⁺。

Milja 等^[14]在 UO₂²⁺存在下采用化学氧化法 制备了苯胺和 N-[5-(8-羟基喹啉基)甲基]苯胺 的共聚物,该方法中与 UO₂²⁺ 配位的 N-[5-(8-羟 基喹啉基)甲基]苯胺通过化学键连接在高分子链 中,因此也属于常规法。

此外,阴离子也可作为模板,采用常规法制备 IIPs。例如,刘耀驰等^[15]以[UO₂(SO₄)₂]²⁻为模 板,二乙基烯丙胺为功能单体,苯乙烯(St)为聚合 单体,二乙烯基苯(DVB)为交联剂,以环己烷为 油相,在水中乳液聚合得到[UO₂(SO₄)₂]²⁻-IIP 离子交换树脂。

常规法合成 IIPs,除了少数简单的功能单体 可从商业渠道获得,往往需要修饰合成新的功能 配体,因此较为繁琐。但常规法合成的印迹聚合 物中功能配体均以共价键连接到聚合物网络中, 配体不易流失,因而稳定耐用。

2.2 嵌入法

用嵌入配体和可聚合配体共同与金属离子形 成配合物,然后发生聚合反应制得 IIPs,其中参与 配位的可聚合配体与嵌入配体都具有重要作用, 它们共同构建了识别位点^[16](实例详见下文 图 5)。图3、图4分别列出了部分嵌入法中常用 的可聚合配体与嵌入配体。

嵌入法合成 IIPs 简单方便,不需要对配体进 行乙烯基的修饰即可用于印迹聚合物的制备,从而 可以极大地拓展 IIPs 的合成。但是嵌入法合成的 IIPs 中,嵌入配体是物理包裹在聚合物网络中的, 因此可能随着使用而流失,从而影响 IIPs 的重复使 用性能。Hrdina 等^[17]用 2-甲基丙烯酰胺基-2-甲 基-1-丙磺酸(AMPS)和二叔丁基环己基并-18-冠-6 (DtBuCH18C6)与 Sr²⁺形成配合物,然后与乙二醇 二甲基丙烯酸酯(EGDMA)共聚制得 Sr²⁺-IIP。所 制得的 IIP 重复使用时对 Sr²⁺ 的回收率还会降低, 作者认为嵌在聚合物网络中的 DtBuCH18C6 会被 淋洗出来,从而降低了 Sr²⁺ 的回收率。

2.3 线性高分子交联法

利用具有配位能力的线性高分子与金属离子 配位,然后利用交联剂将线性高分子交联,从而得 到 IIPs^[18](实例详见下文图 6)。

在线性高分子交联法制备 IIPs 中,预先与模板 离子发生配位的高分子上的配位基团构成了未来的 识别位点,因而最为关键。由于吸附过程多发生在 水相,从而要求线性高分子具有较好的亲水性,目前 使用较多的是壳聚糖、配体修饰的壳聚糖以及配体 修饰的纤维素等。线性高分子交联法可以在水体系 中对目标离子进行印迹,更接近实际吸附时的环境, 而不像常规法、嵌入法多在有机体系中进行。

3 应用领域

3.1 放化分析

放化分析与核武器研究、核燃料循环、环境放 射化学密切相关,对复杂体系中微量放射性核素的 分离和测定已成为放化分析工作者所面临的艰巨 任务,提高分析方法的灵敏度和选择性,是当前放 化分析研究工作的重要课题。IIPs 对目标离子具 有高选择性和强结合能力,因而在光谱、质谱等检 测前采用 IIPs 对目标离子进行选择性富集,或者直 接用 IIPs 来选择性检测,都有很好的应用前景。

图 3 嵌入法中用到的可聚合配体 Fig. 3 Polymeric ligands used in the trapping method

C1

乙酰丙酮(Hacac)

1,4-二羟基-9,10-蒽醌(QZ)

图 4 嵌入法中用到的嵌入配体

Fig. 4 Trapping ligands used in the trapping method

3.1.1 分析前预富集

HO

(1) UO_2^{2+} -IIP

Bae 等^[19] 在乙醇和水的混合溶剂中制备了配 合物 $UO_2(VBA)_2(VBA: 4-乙烯苯甲酸), 然后把$ 所得配合物与 St、DVB 共聚得到 UO²⁺-IIP。用 UO_2^{2+} -IIP 对标准加入 UO_2^{2+} 的自来水和海水进行 预富集,然后用光谱和质谱检测。在 pH=3 时,回 收率达到 100%,富集因子为 20。与 Chelex-100 离 子交换树脂相比, IIP 离子交换树脂对 UO²⁺ 具有 更高的选择性,从而能够进行快速、抗干扰地预富 集,以提高光谱和质谱的精确度,降低检测限。

Sadeghi 等^[16] 利用吡罗昔康(Pir)、4-VP 与 UO_2^{2+} 形成三元配合物,然后与 St、交联剂 DVB 共聚制得 UO_2^{2+} -IIP(图 5)。当 $n(UO_2^{2+}): n(Pir):$ n(4-VP) = 1 : 2 : 2 时,吸附效果最好,其最佳 pH为6,饱和吸附容量为38.58 mg/g,并且经过 6次吸附循环,其饱和吸附容量不会降低。相比 干 Th^{4+} 、 La^{3+} 、 Fe^{3+} 和 Mn^{2+} , IIP 对 UO_2^{2+} 具有 很好的选择性。用 IIP 预浓缩,富集系数为 150, 然后结合偶氮胂Ⅲ显色法,把U的检测限降到 0.8 ng/mL。在模拟海水中和地下水中加入 9.3 ng/mLmL U,用 IIP 测试其回收率分别为 85%和 96%。 同样是采用嵌入法,文献[20-21]利用 5,7-二氯-8-羟 基喹啉(DCQ)、4-VP与UO₂²⁺形成三元配合物, 然后与 St、交联剂 DVB 共聚制得 UO²⁺-IIP,也 成功用于 UO₂⁺ 的预富集。

Liu 等^[18]在 UO²⁺存在的情况下,交联 & 羟基 喹啉修饰的壳聚糖,得到了 UO_2^{2+} -IIP(图 6)。IIP 的饱和吸附容量为 218 mg/g,最佳 pH 为 4.5 \sim 7。 用IIP对含U溶液进行固相萃取(SPE)预富集,富

图 5 用 Pir 和 4-VP 制备 UO_2^{2+} -IIP 的流程^[16] Fig. 5 Schematic representation of the preparation of UO_2^{2+} -IIP using Pir and 4-VP^[16]

集倍数为 50,然后用偶氮胂III 显色法测量,其检测 限为 2 μ g/L,线性范围是 5~1 000 μ g/L。对于加 标 8 μ g/g 的实际泥土和沉积物,该方法可以对 U 实现约 100%的回收。IIP 用于 SPE 可以耐受高的 离子强度和高的干扰离子浓度,作者将其归因于 IIP 中对 UO₂²⁺ 的特异性结合。

(2) Th^{4+} -IIP

He 等^[10] 合成了新的功能配体 *N*-(2-甲酸 基)苯基马来酰胺酸,与 Th⁴⁺配位后,在马来酸修 饰的硅胶表面,实现了接枝聚合制备 Th⁴⁺-IIP (图 7)。该 IIP 具有对 Th⁴⁺快速的吸附速率和高 选择性。对于 Th(\mathbb{N})/La(\mathbb{II})、Th(\mathbb{N})/Ce(\mathbb{II})、 Th(\mathbb{N})/Nd(\mathbb{II})、Th(\mathbb{N})/Ce(\mathbb{II})、 Th(\mathbb{N})/Nd(\mathbb{II})、Th(\mathbb{N})/ \mathbb{Z} r(\mathbb{N}), IIP 的印迹系数分别为 85. 7、88. 9、26. 6、64. 4 和 433. 8。所制备的 IIP 成功地应用于电感耦合等 离子体原子发射光谱法(ICP-AES)检测前对 Th⁴⁺的预浓缩。

Wang 课题组^[22-24]在 Th(Ⅳ)-IIP 合成方面 有较多的工作,并多用于 SPE 预富集。首先合成 了功能单体 1-苯基-3-甲硫基-4-氰基-5-氨基甲酰 甲基丙烯酸吡唑,并用其与 $Th(\mathbb{N})$ 形成配合物, 然后与马来酸修饰的硅胶共聚,制得在硅胶表面 接枝的 Th(Ⅳ)-IIP^[22]。IIP 的饱和吸附容量为 64.8 mg/g,最佳 pH 为 3.5~5。对于 Th(\mathbb{N})/ $U(V_{I})$, Th(V_{I})/Ce(U_{I}), Th(V_{I})/La(U_{I}) π Th(V_{I})/ Zr(IV),IIP 的印迹系数分别为 72 9、89 6、93 8 和 137. 2。作者用 Th(N)-IIP 对溶液中的 Th(N)进行 预浓缩,富集系数为20,然后用紫外-可见光谱进行 测量, 检测限为 0, 43 $\mu g/g$, 线性范围是 1, 43 ~ 103 µg/g。用该 IIP 对加标的泥土、废水等体系中的 Th 进行测量,其回收率均大于 96%。他们还分别用 甲基丙烯酸(MAA)^[23]、3-甲基-1-苯基-4-(顺丁烯酸 酰基)二氢吡唑酮^[24]与Th(Ⅳ)形成配合物,然后与 马来酸修饰的硅胶共聚,制得在硅胶表面接枝的

图 6 用 8-羟基喹啉修饰的壳聚糖制备 UO2²⁺-IIP 的流程^[18] Fig. 6 Schematic representation of the synthesis of UO2²⁺-IIP using 8-hydroxyquinoline modified chitosan^[18]

Th(\mathbb{N})-IIP, 成功用于光谱测量 Th(\mathbb{N})前对 Th(\mathbb{N})的预富集。

(3) Sr^{2+} -IIP

Li 等^[25]在 Sr²⁺存在下,用 γ -(2,3-环氧丙 氧)丙基三甲氧基硅烷(KT-560)来交联壳聚糖, 并在交联过程中加入活化的四钛酸钾晶须的情 况下制得 Sr²⁺-IIP。其最佳 pH 为 1,饱和吸附容 量为 27.58 mg/g。对于 Sr(II)/Zn(II)、Sr(II)/ Co(II)、Sr(II)/Mg(II)和 Sr(II)/Ce(III),IIP 的印迹系数分别为 3.18、3.77、2.50 和 3.64。用 所制备的 IIP 装柱进行 SPE 预浓缩,然后通过 ICP-AES 检测,检测限为 0.21 ng/mL,线性范围 为 0.03~0.30 mg/L。作者对加标几个 mg/L 的 河水以及土壤溶液中的 Sr(II)进行检测,其回收 率达到 96.1%~104.0%。 (4) Cs^+ -IIP

Shamsipur 等^[26] 用二苯并-24-冠-8 与 Cs⁺结 合,然后与 MAA、EGDMA 沉淀共聚制得 Cs⁺-IIP。IIP 对 Cs⁺ 的饱和吸附容量为 50 mg/g,最 佳 pH 为 9,10 次吸附循环仍能保持 95% 的吸附 容量。相比于 Li⁺、Na⁺、Ca²⁺、Sr²⁺等, IIP 对 Cs⁺的选择系数比 NIP 高很多,印迹系数为 23 4~ 47.4。作者用 IIP 对 Cs⁺进行预富集,富集系数为 100,然后结合火焰原子吸收光谱法进行测量,检出 限为 0.7 ng/mL,线性范围为 0.01~8.0 μ g/mL。 对标准加入 Cs⁺的地下水和自来水进行预富集,其 回收率达到 96%~98%。

Zhang 等^[27]在 Cs⁺存在的情况下,用KT-560 对壳聚糖进行交联,得到 Cs⁺-IIP。其饱和吸附 容量为 32. 9 mg/g,最佳 pH 为 6。相比于 Pb^{2+} 、

图 7 以 N-(2-甲酸基)苯基马来酰胺酸为功能单体制备 Th⁴⁺-IIP^[10] Fig. 7 Schematic representation of the preparation of Th⁴⁺-IIP using N-(o-carboxyphenyl)maleamic acid as functional monomer^[10]

 Zn^{2+} 、 Sr^{2+} 、 Ni^{2+} 、 Ba^{2+} 等金属离子, IIP 对 Cs^+ 的 选择系数要远高于 NIP, 印迹系数为 9. 27~301。 作者用 IIP 对含有 Cs^+ 的溶液进行预富集, 然后用 ICP-AES 检测, 其检测限为 0. 180 μ g/L, 线性范围 为 0. 050~10. 000 mg/L。对于标准加入 Cs^+ 的生 活废水和工业废水, 实现了 98. 6%~100. 5% 的回 收率。

3. 1. 2 用于传感器检测 Metilda 等^[28]用 DCQ、 4-VP 与 UO₂²⁺ 形成三元配合物,然后与 St、DVB 共聚制得 UO₂²⁺-IIP,将其分散在 2-硝基苯辛醚中, 然后包埋在聚氯乙烯母体中,从而制成电位传感器。 传感器检测 UO₂²⁺ 的线性范围为 2 0×10⁻⁸~1.0× 10^{-2} mol/L,检测限为 2.0×10⁻⁸ mol/L。相对 于碱金属、碱土金属以及重金属离子,传感器对 UO_2^{2+} 具有很好的选择性。对于标准加入几个 μ g/L UO₂²⁺ 的海水和自来水样品,用该传感器 测量的回收率达到 100%。James 等^[29]用(4-乙 烯基苯基)偶氮基-2-萘酚、4-VP 与 UO₂²⁺ 形成 三元配合物,然后与 4-VP、EGDMA 进行共聚制 得 UO₂²⁺-IIP,将 UO₂²⁺-IIP 颗粒包裹在聚甲基丙 烯酸甲酯中,然后在玻璃表面做成薄膜,从而组 装成一个二维的仿生光极来探测和定量测量水 体中的 UO_2^{2+} 。所制备的光极对 UO_2^{2+} 的线性 响应区间为 $0 \sim 1.0 \ \mu g/mL$,检测限为 $0.18 \ \mu g/mL$ 。IIP 所制备光极的检测限和线性范围均好 于 NIP 所制备光极。且所制备 IIP 光极能够稳 定且精确地工作 $3 \ \gamma F$,因此可用于分析水样 中的 UO_2^{2+} 。

上述 IIPs 以其高选择性和强结合能力,在分 析前预富集以及制备传感器方面得到了良好的应 用。基于 IIPs 的优点,表 1 所列 IIPs 在放化分析 方面也具有潜在的应用前景。

3.2 海水提铀

铀是一种重要的核资源,而陆地铀矿资源十 分有限。海水中含有浓度极低($3 \mu g/kg$)、但总量 巨大的铀资源,因而海水提铀受到越来越多的关 注。海水中铀含量低、干扰离子多(表 $2^{[52]}$)、铀以 $[UO_2(CO_3)_3]^{4-}$ 形态存在是海水提铀的主要难 点。水合二氧化钛、偕胺肟基高分子材料、生物材 料等多种吸附材料被用于海水提铀的研究^[53-54],

表 1 可用于放化分析的其它 IIPs

Table 1 Other IIPs that may be used in radiochemical analyses

目标	功能单体/	饱和吸附容量/	适宜	性质	
离子	高分子前体	$(mg \bullet g^{-1})$	pН	注版	文献
UO_2^{2+}	СААН			对于 $\mathrm{UO}_2^{2+}/\mathrm{VO}^{2+}$ 、 $\mathrm{UO}_2^{2+}/\mathrm{Fe}^{3+}$ 和 $\mathrm{UO}_2^{2+}/\mathrm{Th}^{4+}$,IIP 的印迹系数分别为	[30]
				11、& 1 和 2. 7	
	VBA			制得离子印迹半透膜,该半透膜对 UO_2^{2+} 具有较高的通透能力,而几乎不	[31]
				能透过其它金属离子;而用 Ni ²⁺ 作为模板制得的离子印迹半透膜对	
				UO_2^{2+} 的通透能力就很弱	
MAGA 181 3.5 HAQ 12.4 4~7		3.5	对于 U(\[)/Th(]\)、U(\[)/Fe(]])和 U(\[)/Mn(]]),IIP 的选择系数	[32]	
			分别为 48, 9 、8, 17 和 15, 8		
		$4\!\sim\!7$	IIP 能够在 5 min 达到 95%的吸附。符合 Langmuir 吸附模型。对于很多 2、	[33]	
			$_3$ 价离子, IIP 对 UO_2^+ 都具有良好的选择性,并且具有一定印迹效应		
	HASS	147.8	5	对于 UO_2^{2+}/VO_2^{2+} 、 UO_2^{2+}/Cd^{2+} 、 UO_2^{2+}/Cu^{2+} 和 UO_2^{2+}/Hg^{2+} , IIP 的印	[34]
				迹系数分别为 40.96、40.58、71.34、37.55	
	胡户[5]脉			对于 UO_2^{z+}/Cu^{z+} 、 UO_2^{z+}/Fe^{z+} 等金属离子, IIP 的印迹系数为 5.5×	[35]
	而步而休	0 102	6	$10^2 \sim 4.7 \times 10^3$ 相比工 M ₂ ²⁺ R ₂ ²⁺ C ₂ ²⁺ Th ⁴⁺ 第 11P 对 110 ²⁺ 的选择系数均十工 200	[36]
3.	凸口癿体 4-二-「(2-羟基-5-氯甲	3基	0		[30]
3	苯亚甲基)氨基]苯甲	 酸			
	丙烯酰胺、	354.85	7	对于 UO_a^{2+}/Cr^{3+} 、 UO_a^{2+}/Cu^{2+} 、 UO_a^{2+}/Eu^{3+} 和 UO_a^{2+}/Ni^{2+} 等, IIP 的印	[37]
	4-VP			· · · · · · · · · · · · · · · · · · ·	
	N-羟乙基丙烯酰胺	146.41	5	IIP 在 1.0 min 达到吸附平衡。对于 UO_2^{2+}/Zn^{2+} 、 UO_2^{2+}/Ni^{2+} 、 $UO_2^{2+}/$	[38]
	1-乙烯基咪唑			Co ²⁺ 和 UO ²⁺ /Pb ²⁺ ,IIP 的印迹系数分别为 11.01、14.99、12.36、64.77	
	4-VP,pyr2en		7	适宜 pH 为 7 ,相比于 Th ⁴⁺ 、Eu ³⁺ 、Cu ²⁺ 等,IIP 对 UO $_2^{2+}$ 的选择系数均大	[39]
				于 20	
	4-VP,SALO,	1. 21	4	IIP 对 UO_2^{2+} 的选择性要好于 Pb^{2+} 、 Ni^{2+} ,对于 UO_2^{2+}/Ni^{2+} 和 $UO_2^{2+}/$	[40]
	MAA			Pb ²⁺ ,IIP 的印迹系数为 0.45 和 1.35	57
元 聚糖		156	$5 \sim 6$	吸附符合 Langmuir 模型,吸附可刀字符合拟 级可刀字模型。相対于常 L UO^{2+} # ため TL^{4+} E^{-3+} M- $^{2+}$ 笑 南 Z UO^{2+} UD H UO^{2+} 是 右 - 字	[41]
				$\mathbf{J} = \mathbf{J} = $	
	壳聚糠	187.26	5	的处理性 物和吸附时间为 3 h。其吸附动力学符合拟二级动力学模型,吸附等温线	[42]
	J U JIC MA	元泉橋 187.20 3 记祖吸附时间为311。兵吸附如万子19日以二级如万子後。 符合 Langmuir 模型		符合 Langmuir 模型	
	水杨醛肟修饰的	180	5	IIP 的吸附等温曲线符合 Langmuir 模型,吸附动力学为拟二级动力学。	[43]
	羧甲基纤维素			相比于 VO^{2+} 、 Fe^{3+} 、 Mn^{2+} 、 Cu^{2+} , IIP 对 UO^{2+}_2 具有良好的选择性,并且	
				具有明显的印迹效应。 5 次吸附洗脱循环后仍能保持 92% 的吸附容量	
Th^{4+}	MAGA	40.44		对于 UO_2^{2+} 、 La^{3+} 、 Ce^{3+} , IIP 对 Th^{4+} 的选择系数分别为 68 、97、116。且	[44]
				IIP 微球可以重复使用多次而不会明显降低吸附容量	
	BASPDA	42.54	4.5	对于 Th(ℕ)/La(Ⅲ)、Th(ℕ)/Ce(Ⅲ)、Th(ℕ)/Nd(Ⅲ)和 Th(ℕ)/	[45]
				U(N), IIP 的印迹系数分别为 82. 2、93. 1、21. 0 和 62. 4	F 4 a 7
	邻本中酸修饰	61. 2	$2 \sim 4$	对于 Th(Ŋ)/U(Ŋ),Th(Ŋ)/La(Ⅲ)和 Th(Ŋ)/Mn(Ⅱ),HP 的印迹系 物公别为 8 25 8 75 和 10 81	<u></u> [46]
S _2+	いんな	145 77	6		E47]
51	MAA	143.77	0	11年間11日 塑体衣面通見り 芝加成的衣 世校 移表 自動待 広 Si III, 対于 Sr(II)/Co(II), Sr(II)/Cu(II), Sr(II)/Ca(II)和	
				Sr(Ⅱ)/Zn(Ⅱ),IIP 的印迹系数为 6. 22~10. 64	
	売聚糖	9	0	对于 Sr ²⁺ /Cs ⁺ ,IIP 的印迹系数为 95.8	[48]
	売聚糖	60.6	6	IIP 对 Sr ²⁺ 的选择性要好于 Cu ²⁺ 、Co ²⁺ 、Zn ²⁺ 等	[49]
	売聚糖	45	0	饱和吸附时间为 $60 \min$,重复 4 次循环仅损失 17% 的吸附效率。对于	[50]
				Ba ²⁺ 、Zn ²⁺ 、Fe ³⁺ 等,IIP 对 Sr ²⁺ 具有良好选择性	
	売聚糖	12.8	7	所制备的凹凸棒石表面离子印迹聚合物对 Sr ²⁺ 的识别能力为凹凸棒石的 3	[51]
				倍以上	

但其对 UO²⁺ 的选择性还有待提高。IIPs 对目标 离子具有高选择性和强结合能力,在干扰众多且 铀浓度很低的海水中提取铀具有优势。

表 2 海水中主要金属元素的浓度[52]

Table 2 Concentration of the major metal elements in seawater^[52]

元素	$ ho/(\mathrm{mg} \cdot \mathrm{L}^{-1})$	元素	$ ho/(\mathrm{mg} \cdot \mathrm{L}^{-1})$
Na	10 800	Al	0.001
Κ	392	Zn	0.005
Mg	1 290	Ni	0.0066
Ca	411	V	0.0019
Sr	8.1	Mo	0.01
Fe	0.0034	U	0.0033

Shamsipur 等^[55] 用 MAA 与 UO_2^{+} 形成配合物,然后在引发剂修饰的硅胶表面用紫外线引发聚合,在交联剂 EGDMA 的作用下,在硅胶表面形成 一层 UO_2^{+} -IIP。IIP 最佳 pH 为 3 0,饱和吸附容 量为 12.6 mg/g。相比于 Th⁴⁺、Fe³⁺、Mn²⁺等,IIP 对 UO_2^{+} 的选择系数均大于 400,且 IIP 的印迹系 数均大于 100。在加入 5 ng/mL 的里海海水中,IIP 对 U 的回收率达到 103.8% ±1.8%。

Singh 等^[56] 用水杨醛肟(SALO)、4-VP 与 UO²⁺ 在 2-甲氧基乙醇中形成三元配合物,然后 与 MAA、EGDMA 共聚制得 UO²⁺-IIP。当 $n(UO^{2+}_{2}):n(SALO):n(4-VP)=1:2:2$ 时, 吸附效果最好。IIP 的最佳 pH 为 3.5~6.5,饱 和吸附容量为 133 mg/g。相比于 Th⁴⁺、Fe³⁺等 金属离子,IIP 对 UO²⁺ 具有很好的选择性。其 在加标 20 μ g/L 的模拟海水、地下水、河水中对 UO²⁺ 的回收率大于 95%。

表 3 总结了离子印迹聚合物在海水提铀中 的尝试。其中大部分印迹聚合物的适宜 pH 都 不在海水的弱碱性 pH 范围内。且上述研究均 以 UO₂ (NO₃)₂ 作为吸附母液考察其吸附性质, 只有最后在用标准加入法测回收率时,才采用 真实海水进行实验。由于海水中的铀大部分以 [UO₂(CO₃)₃]⁴⁻的形式存在,故在[UO₂(CO₃)₃]⁴⁻ 溶液中研究其吸附性能更能反映其在海水中可能 的真实情况。

β-二酮类配体在弱碱性环境中对 UO_2^{2+} 具有 良好的结合能力,因此本课题组^[11]用甲基丙烯酸 (2,4-二羰基)-3-戊酯与 UO_2^{2+} 形成配合物,然后 用 EGDMA 交联得到 UO_2^{2+} -IIP(图 8)。在 $(NH_4)_4[UO_2(CO_3)_3]溶液中,此 IIP 对 UO_2^{2+}$ 的 饱和吸附容量为 15.3 mg/g。其吸附动力学过程 符合拟二级动力学模型。IIPs 能从含有 Li⁺、 Na⁺、K⁺和 Rb⁺等金属离子的混合溶液中选择性 吸附 UO_2^{2+} 。在 10 mL 加入 3 μg/mL 的海水中 用 10 mg UO_2^{2+} -IIP 吸附,其对 U 的回收率为 93.8%± 5.4%。

本课题组的工作表明,在海水的弱碱性环境 中,该种 IIP 仍能对[UO₂(CO₃)₃]⁴⁻中的铀进行 有效地吸附。IIPs 应用于海水提铀,最关键的还 是要在真实的海洋中测试其效果,只有在海洋中 的实际试验才能检验在实验室模拟条件下得到的 吸附容量、动力学和选择性,但目前尚没有相关工 作。目前研究中的材料多为粉末材料,如何对其 进行固定以适应实际需求也是不可回避的问题。

3.3 低放废液处理

在核工业的各个环节,例如核燃料的开采提 纯、反应堆的运行过程、乏燃料的后处理、反应堆 的退役等都会产生低放废液。絮凝沉降、蒸发浓 缩、离子交换、膜技术等已经应用于低放废液的处 理,但其具有能耗大或者产生放射性树脂等问 题^[58]。对于低放废液中的 UO²⁺、Th⁴⁺、Sr²⁺、 Cs⁺、ZrO²⁺,若能对其进行选择性富集,可以降低 对环境的危害。IIPs 可以选择性地提取目标金属 离子,因而将IIPs应用于废液处理以及被污染水

表 3 离子印迹聚合物在海水提铀中的尝试

功能单体	最佳 pH 范围	饱和吸附容量 $/(mg \cdot g^{-1})$	(模拟)海水铀回收率/%	参考文献					
Pir,4-VP	6.0	21.7	85. 0±1. 7(9. 3 μg/L)	[16]					
SA,4-VP	6. 0~7. 5	27. 4	25. 0±0. 5(10 μ g/L)	[28]					
DCQ,4-VP	5. 0~7. 5	32.6	83. 0±0. 8(10 μ g/L)	[28]					
MAA	3. 0	12. 6	103.8 \pm 1.8(5 μ g/L)	[55]					
SALO,4-VP	3. 5~6. 5	133	95. 9 \pm 1. 1(20 μ g/L)	[56]					
DCQ,4-VP	4.5~7.5	31. 25	83(3 µg/L)	[57]					

Table 3 Attempts of extracting uranium from sea water using IIPs

注:括号中数据为(模拟)海水中 UO2²⁺ 的初始质量浓度

体的处理也很有前途。

Preetha 等^[59]用 SALO、4-VP 与 UO_2^{2+} 形成 三元配合物,然后用 DVB 交联制得 UO_2^{2+} -IIP,其 饱和吸附容量为 98.5 mg/g,最佳 pH 为 3.5~5。 对于核废液中常见离子, UO_2^{2+} -IIP 对 UO_2^{2+} 的选 择性要好于其它金属离子。并且在含有 5~300 mg U 的 500 mL 的模拟核废液中用 0.1 g UO_2^{2+} -IIP 实现了铀的选择性提取。James 等^[60]则用甲酰 胺肟、4-VP 与 UO_2^{2+} 形成配合物,然后与甲基丙 烯酸羟乙酯(HEMA)、EGDMA 共聚制得 UO_2^{2+} -IIP。IIP 的饱和吸附容量为 19.0 mg/g,最佳 pH 为 8.0~9.0。对于 Cu²⁺、Mn²⁺、Co²⁺等金属离子, IIP 对 UO_2^{2+} 的选择性要比 NIP 高约 100 倍。在模 拟含铀采矿废液中,即使干扰离子提高到正常浓度 的 25 倍, UO_2^{2+} -IIP 仍能实现对铀的定量回收。 Milja 等^[61]把 DCQ 修饰在硅胶的表面,然后 加入 UO²⁺₂、4-VP,再与 HEMA、EGDMA 共聚制 得硅胶表面印迹聚合物。IIP 对 UO²⁺₂ 的饱和吸 附容量为 23.1 mg/g,适宜 pH 为 5~7。相比于 Ca²⁺、Cu²⁺、Fe³⁺等,IIP 对 UO²⁺₂ 的选择性是 NIP 的 10²~10³ 倍。作者用 IIP 对模拟的地下 水和盐湖水中的 UO²⁺₂ 分别实现了 94%和 70% 的回收。硅胶是良好的基材,将磁性物质包裹于 其中,可简化分离操作。Tavengwa 等^[62]用 γ-甲 基丙烯酰氧丙基三甲氧基硅烷包裹磁性小球,然 后加入到 UO²⁺₂ 与 SALO、4-VP 形成的配合物溶 液,与 MAA、EGDMA 共聚得到具有磁性内核的 UO^{2+}_{2} -IIP。IIP 和 NIP 的饱和吸附容量分别为 1.1 mg/g 和 0.95 mg/g,最佳 pH 为 4。磁性印 迹聚合物的选择性为 U(VI)>Ni(II)>Pb(II)。 并且吸附脱附 5 次循环后仍有 95%的吸附容量。 对于工业废水中 UO_2^{2+} ,此 IIP 的提取率为 77%。

在乏燃料后处理中,Zr 的存在往往会导致萃 取过程中三相的形成,因此在核废液中 ZrO^{2+} 的 去除是一个重要的问题。Chang 等^[63] 用 APS 与 ZrO^{2+} 配位,然后在活化硅胶存在情况下,加热凝 胶化,从而在硅胶表面得到一层 ZrO^{2+} -IIP 凝胶。 其饱和吸附容量为 11 mg/g,最佳 pH 为 2.5。对 于 $Zr(\mathbb{N})/Ti(\mathbb{N}), Zr(\mathbb{N})/Y(\mathbb{I})$ 和 $Zr(\mathbb{N})/$ Nb(V), IIP 的印迹系数分别为 32、34 和 50。用 IIP 对含 ZrO^{2+} 溶液进行预浓缩,富集因子为 200, 然后进行 ICP-AES 检测, 其检测限为 0.14 ng/mL,线性范围为 0. 25~300 µg/L。对加标几 个 $\mu g/mL$ 的废水、自来水、合金样品进行检测,其 对 $Zr(\mathbb{N})$ 的回收率为 98.0%~103.1%。类似 的, Ren 等^[64]用 APS 与 ZrO²⁺ 配位, 然后在活化 硅胶存在情况下,用 TEOS 进行交联,从而在硅 胶表面得到一层 ZrO^{2+} -IIP 凝胶(图 9)。其饱和 吸附容量为 46.7 mg/g,最佳 pH 为 4.5。IIP 对 ZrO^{2+} 的选择性要好于 Cu^{2+} 、 Sb^{3+} 、 Eu^{3+} 。

3.4 其它应用

(1) 三价锕系离子的提取

三价锕系离子(An³⁺)的提取是核燃料后处 理中的一个重要课题。但是 An³⁺往往具有强放 射性、高毒性,不易获得纯品,因而不便于印迹聚 合物的合成,而三价镧系离子(Ln^{3+})与其相对应 的 An^{3+} 具有非常相似的性质,因而可以用 Ln^{3+} 的 IIPs 来用于 An^{3+} 的分析、分离。下面介绍的 工作均以 Ln^{3+} 的分析为目的,但有望用于 An^{3+} 的分析分离。

Zhang 等^[65]用表面印迹技术合成了噻吩甲 酰三氟丙酮(TTA)改性的 Dy^{3+} -印迹硅胶,在 La³⁺、Nd³⁺ 和 Gd³⁺ 等离子竞争的情况下,对 Dv^{3+} 的最大选择系数大于 350。此印迹硅胶能在 酸性环境中稳定存在,动力学吸附和解吸速率快 且饱和吸附容量大,可作为 SPE 材料用于流动注 射固相萃取与 ICP-AES 联机使用检测 Dy³⁺。这 种方法快速、灵敏且具有选择性,能够用于复杂基 质的环境样品中痕量镝的检测和连续预富集分离 镝。Uezu 等^[66]合成了磷酸二油烯酯,并用其与 La^{3+} 、 Ce^{3+} 、 Dy^{3+} 配位,然后通过乳液聚合,制得 IIP。结果发现 Dy³⁺-IIP 对 Dy³⁺的选择性要优于 Ce³⁺、La³⁺,且优于 NIP。而 La³⁺-IIP 对 La³⁺选 择性没有提升, Ce^{3+} -IIP 对 Ce^{3+} 的选择性只是相对 于 La³⁺ 提高了。考虑到 La³⁺、Ce³⁺、Dy³⁺ 离子半径 因镧系收缩而依次减小,作者认为 IIP 只有对小离 子的印迹才有效,而对大离子形成的印迹空腔,小 离子也能够进入,因而不能有效地提高选择性。

Vigneau 等^[67] 合成了二亚乙基三胺五乙酸 的衍生物,并在 Gd³⁺存在下与对乙基苯乙烯、 DVB 共聚制得 Gd³⁺-IIP。对于 Gd³⁺/La³⁺,IIP 的印迹系数为 3. 2,表明 IIP 增强了二亚乙基三胺 五乙酸对 Gd³⁺的选择性。

Guo 等^[68] 用 Nd³⁺ 与 4-VP、DCQ 制得三元配 合物,然后溶解在 DMF 中,与 St、DVB 共聚制得 Nd³⁺-IIP。此 IIP 的饱和吸附容量为 35. 18 mg/g, 最佳 pH 为 7. 0~7. 5。相比于 La³⁺、Ce³⁺、Pr³⁺、 Sm³⁺, IIP 对 Nd³⁺ 的选择系数均大于 48,但 NIP 的选择性很弱。用 IIP 预富集,然后通过 ICP-AES 检测,将 Nd³⁺ 的检测限降到 6. 1 ng/mL,并 且成功地对 GBW07401 泥土样品中的 Nd³⁺ 进行 了检测。

(2) 放射性核素的制备

放射性核素在生产、医药、科研领域有着重要 应用。其往往是通过另一种核素来制备,因此需 要分离目标核素与母体核素。离子印迹聚合物能 特异性地分离目标离子,因此可以用于放射性核 素的制备。

其中,一个典型的应用是医用⁹⁰Y制备中 Y³⁺与其母体 Sr²⁺的分离。Chauvin 等^[69]用 6-(对乙烯基苯基)-氨基甲酰基吡啶-2-甲酸与 Y³⁺ 形成 3:1 配合物, 然后与 St、DVB 共聚制得 Y^{3+} -IIP,其饱和吸附容量为 8.9 mg/g,吸附速率 很快 $(t_{1/2} = 1.7 \text{ min})$ 。用该 IIP 装柱, Y^{3+} 的柱保 留时间要远高于 Sr²⁺。把 10 mg Y(Ⅲ)与 5 g 牛 奶灰分溶于 200 mL 水, 用 2 g Y³⁺-IIP 可以实现 对 $Y^{3+}72\% \pm 4\%$ 的回收。Sarabadani 等^[70]则用 1-羟基-4-(烯丙基)-9,10-蒽醌与 Y³⁺ 形成 2:1 配合物,然后与 MAA、EGDMA 共聚制得 Y³⁺-IIP。其最佳 pH 为 8, 用该 IIP 可以从 SrCO₃ 靶 上回收 99.8%的 $^{86-88}$ Y,其中 Sr 的含量可降低到 3 μg/mL。该课题组还用 1,4-二羟基-9、10-蒽 醌^[71]为配体制备了 Y³⁺-IIP,并用于 ICP-AES 测 量 Y^{3+} 前的预富集。赖晓绮等^[72] 用 4-VP、乙酰 丙酮与 Y³⁺ 形成三元配合物,然后与 EGDMA 共 聚形成 Y^{3+} -IIP。该 IIP 最佳 pH 为 6, 饱和吸附 容量为 12.4 mg/g。对于 Y^{3+}/Fe^{3+} 、 Y^{3+}/Mg^{2+} 等,IIP 的印迹系数为 2.67~3.17。

(3) 防护治疗

利用 IIP 对模板离子的选择性,除去人体中 有毒、有放射性的离子,是一个有益的尝试。 Zhang 等^[73]在 Cu²⁺、Pb²⁺、Ag⁺存在的条件下,

用戊二醛和乙二醛交联壳聚糖,然后用盐酸洗脱 模板离子,制得相应的 IIP, 然后用 H_2O_2 溶液处 理,使壳聚糖变为低分子量的可溶"壳寡糖"。结 果发现 Cu²⁺ 印迹的壳寡糖比未印迹的壳寡糖对 UO_2^{2+} 具有更高的吸附容量和选择性,而对 Fe^{3+} 、 Ca²⁺、Mg²⁺等没有明显的提高,作者将此现象归 因于 Cu²⁺ 与 U⁶⁺ 具有接近的离子半径。在加入 Cu²⁺ 印迹壳寡糖的条件下,暴露在贫铀溶液中的 肾细胞具有更高的细胞活性,更少的蛋白释放和 更小的膜和 DNA 损伤。这是因为 Cu²⁺ 印迹壳 寡糖结合了 UO²⁺,使其进入细胞的量减少,从而 降低了对细胞的损伤。对于选用 Cu²⁺ 作为模板 得到的印迹寡聚糖具有最好的识别 UO⁺⁺ 的能 力,作者没有给出详尽的解释,也没有解释为何不 直接选用 UO²⁺ 来作为模板。尽管如此,该工作 也为 IIPs 用于放化防护和治疗提供了有益地 尝试。

4 总结与展望

IIPs 因对模板离子的高选择性和强结合能力 而受到各个领域的关注。可以说凡是有离子分离 问题的地方,都有可能是 IIT 的应用舞台。在放 化领域,已经有较多工作涉及到 IIT 的应用,但多 为实验室研究,离实际应用仍有相当的距离。相 信以后的研究将会在以下几方面开展。

(1) 拓展 IIT 在放化领域的应用范围。目前 IIT 还只是针对 UO_2^{2+} 、 Th^{4+} 、 Sr^{2+} 、 Cs^+ 、镧系离 子等,但放化领域还有更多、更复杂的离子分离问 题,这些问题有望用 IIT 来解决。因此,以后的研 究会面向更多种类、更多价态的离子以及阴离子, 特别是 TcO_4^- 。

(2) 拓展 IIP 制备中配体范围。冠醚、葫芦 脲等超分子主体分子本身就有一定的离子识别能 力,如果结合 IIT,则可能产生协同效应。在萃取 化学中,许多萃取剂对目标离子具有一定的选择 性,若借鉴其结构来制备 IIP,可以提高配体筛选 的效率。

(3) 替代模板的印迹研究。在放射化学中, 一些模板离子难以获得或者有毒,用与其类似离 子作为模板来制备 IIP 是非常值得研究的课题。 此外,在洗脱 IIP 的过程中,可能会有模板离子的 残留,给分析带来干扰,此时可考虑用替代模板来 制备 IIP。

(4) IIPs 辐照性能的研究。放化分离中经常

遇到放射性的环境,因而 IIPs 的辐照稳定性是必须研究的问题。

参考文献:

- [1] Branger C, Meouche W, Margaillan A. Recent advances on ion-imprinted polymers[J]. React Funct Polym, 2013, 73: 859-875.
- [2] Rao T P, Kala R, Daniel S. Metal ion-imprinted polymers-novel materials for selective recognition of inorganics[J]. Anal Chim Acta, 2006, 578(2): 105-116.
- [3] 牟怀燕,高云玲,付坤,等. 离子印迹聚合物研究进 展[J]. 化工进展,2011,30:2467-2480.
- [4] Pauling L. A theory of the structure and process of formation of antibodies[J]. J Am Chem Soc, 1940, 62(10): 2643-2657.
- [5] Wulff G, Sarhan A, Zabrocki K. Enzyme-analogue built polymers and their use for the resolution of racematers[J]. Tetrahedron Lett, 1973, 14(44): 4329-4332.
- [6] Vlatakis G, Andersson L I, Müller R, et al. Drug assay using antibody mimics made by molecular imprinting [J]. Nature, 1993, 361(6413): 645-647.
- [7] Nishide H, Deguchi J, Tsuchida E. Selective adsorption of metal-ions on crosslinked poly(vinylpyridine) resin prepared with a metal ion as a template[J]. Chem Lett, 1976, (2): 169–174.
- [8] 沈兴海,张京晶,高嵩,等.典型超分子体系在放射化学领域的应用[J].化学进展,2011,23:1386-1399.
- [9] 范洪涛,孙挺,董佳,等. 离子印迹聚合物及其在分 析化学中的应用[J]. 化学通报,2009,72(1):10-14.
- [10] He Q, Chang X, Wu Q, et al. Synthesis and applications of surface-grafted Th(N)-imprinted polymers for selective solid-phase extraction of thorium (N) [J]. Anal Chim Acta, 2007, 605(2): 192-197.
- [11] Zhang H, Liang H, Chen Q, et al. Synthesis of a new ionic imprinted polymer for the extraction of uranium from seawater[J]. J Radioanal Nucl Chem, 2013, 298: 1705-1712.
- [12] Sadeghi S, Aboobakri E. Magnetic nanoparticles with an imprinted polymer coating for the selective extraction of uranyl ions [J]. Microchim Acta, 2012, 178(1-2): 89-97.
- Li Q, Liu H, Liu T, et al. Strontium and calcium ion adsorption by molecularly imprinted hybrid gel[J]. Chem Eng J, 2010, 157(2-3): 401-407.
- [14] Milja T E, Krupa V S, Rao T P. Synthesis, characterization and application of uranyl ion imprinted polymers of aniline and 8-hydroxy quinoline functionalized

aniline[J]. RSC Adv, 2014, 4(58): 30718.

- [15] 刘耀驰,张晓文,刘慧君,等. 硫酸铀酰印迹离子交换树脂的合成及识别特性研究[J]. 高等化学工程学报,2006,20(4):510-514.
- [16] Sadeghi S, Mofrad A A. Synthesis of a new ion imprinted polymer material for separation and preconcentration of traces of uranyl ions[J]. React Funct Polym, 2007, 67(10): 966-976.
- [17] Hrdina A, Lai E, Li C, et al. Synthesis of crown ether modified cation exchange polymer particles for ⁹⁰Sr urinalysis[J]. React Funct Polym, 2012, 72 (5): 295-302.
- [18] Liu Y, Cao X, Le Z, et al. Pre-concentration and determination of trace uranium (VI) in environments using ion-imprinted chitosan resin via solid phase extraction[J]. J Braz Chem Soc, 2010, 21: 533-540.
- [19] Bae S Y, Southard G L, Murray G M. Molecularly imprinted ion exchange resin for purification, preconcentration and determination of UO₂²⁺ by spectrophotometry and plasma spectrometry [J]. Anal Chim Acta, 1999, 397: 173-181.
- [20] Metilda P, Mary Gladis J, Prasada Rao T. Influence of binary/ternary complex of imprint ion on the preconcentration of uranium(VI) using ion imprinted polymer materials[J]. Anal Chim Acta, 2004, 512(1): 63-73.
- [21] Gladis J M, Rao T P. Effect of porogen type on the synthesis of uranium ion imprinted polymer materials for the preconcentration / separation of traces of ura – nium[J]. Microchim Acta, 2004, 146(3-4): 251–258.
- [22] Lin C R, Wang H Q, Wang Y Y, et al. Selective solid-phase extraction of trace thorium (IV) using surface-grafted Th (IV)-imprinted polymers with pyrazole derivative [J]. Talanta, 2010, 81(1-2): 30-36.
- [23] Lin C R, Wang H Q, Wang Y Y, et al. Selective preconcentration of trace thorium from aqueous solutions with Th(]V)-imprinted polymers prepared by a surface-grafted technique[J]. Int J Environ Anal Chem, 2011, 91(11): 1050-1061.
- [24] Cheng Z Q, Wang H Q, Wang Y Y, et al. Synthesis and characterization of an ion-imprinted polymer for selective solid phase extraction of thorium(N)[J]. Microchim Acta, 2011, 173(3-4): 423-431.
- [25] Li C X, Zhang X J, Pan J M, et al. Strontium([]) ion surface-imprinted polymers supported by potassium tetratitanate whiskers: synthesis, characterization and adsorption behaviours [J]. Adsorpt Sci Technol, 2009, 27: 845-859.

- [26] Shamsipur M, Rajabi H R. Flame photometric determination of cesium ion after its preconcentration with nanoparticles imprinted with the cesiumdibenzo-24-crown-8 complex[J]. Microchim Acta, 2012, 180: 243-252.
- [27] Zhang Z, Xu X, Yan Y. Kinetic and thermodynamic analysis of selective adsorption of Cs(I) by a novel surface whisker-supported ion-imprinted polymer[J]. Desalination, 2010, 263: 97-106.
- [28] Metilda P, Prasad K, Kala R, et al. Ion imprinted polymer based sensor for monitoring toxic uranium in environmental samples [J]. Anal Chim Acta, 2007, 582(1): 147-153.
- [29] James D, Gladis J M, Pandey A K, et al. Design of two-dimensional biomimetic uranyl optrode and its application to the analysis of natural waters[J]. Talanta, 2008, 74(5): 1420-1427.
- [30] Saunders G D, Foxon S P, Walton P H, et al. A selective uranium extraction agent prepared by polymer imprinting[J]. Chem Commun, 2000, 4(4): 273–274.
- [31] Kimaro A, Kelly L A, Murray G M. Molecularly imprinted ionically permeable membrane for uranyl ion[J]. Chem Commun, 2001, 14(14): 1282-1283.
- [32] Say R, Ersoz A, Adil D. Selective separation of uranium containing glutamic acid molecular-imprinted polymeric microbeads [J]. Sep Sci Technol, 2003, 38: 3431-3447.
- [33] Fasihi J, Ammari Alahyari S, Shamsipur M, et al. Adsorption of uranyl ion onto an anthraquinone based ion-imprinted copolymer[J]. React Funct Polym, 2011, 71(8): 803-808.
- [34] Monier M, Elsayed N H. Selective extraction of uranyl ions using ion-imprinted chelating microspheres[J]. J Colloid Interface Sci, 2014, 423: 113-122.
- [35] Kushwaha S, Sudhakar P P. Noncovalent surface grafting of uranium complexed cucurbit[5]uril oligomer onto palm shell powder: a novel approach for selective uranyl ion extraction[J]. Analyst, 2012, 137(14): 3242-3245.
- [36] 吴敏龙,赵敏敏,张光亮,等. 铀酰-salophen 印迹聚 合物的合成与性能研究[J]. 化工应用,2012,41(5): 748-751.
- [37] Liu M, Chen C, Wen T, et al. Synthesis of magnetic ion-imprinted composites and selective separation and preconcentration of U(VI)[J]. Dalton T, 2014, 43(19): 7050-7056.
- [38] Qian J, Zhang S, Zhou Y, et al. Synthesis of surface ion-imprinted magnetic microspheres by locating polymerization for rapid and selective separation of

uranium(V[)[J]. RSC Adv, 2015, 5(6): 4153-4161.

- [39] Ahmadi S J, Noori-Kalkhoran O, Shirvani-Arani S. Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO₂⁺) ions[J]. J Hazard Mater, 2010, 175 (1-3): 193-197.
- [40] Tavengwa N T, Cukrowska E, Chimuka L. Synthesis of bulk ion-imprinted polymers (IIPs) embedded with oleic acid coated Fe₃O₄ for selective extraction of hexavalent uranium[J]. Water SA, 2014, 40(4): 623.
- [41] Liu Y, Cao X, Hua R, et al. Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA crosslinked hydrogel[J]. Hydrometallurgy, 2010, 104 (2): 150-155.
- [42] Zhou L, Shang C, Liu Z, et al. Selective adsorption of uranium (VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins[J]. J Colloid Interface Sci, 2012, 366(1): 165-172.
- [43] Monier M, Abdel-Latif D A. Synthesis and characterization of ion-imprinted resin based on carboxymethyl cellulose for selective removal of UO₂²⁺ [J]. Carbohydr Polym, 2013, 97(2): 743-752.
- [44] Buyuktiryaki S, Say R, Ersoz A, et al. Selective preconcentration of thorium in the presence of UO²⁺, Ce³⁺ and La³⁺ using Th(IV)-imprinted polymer[J]. Talanta, 2005, 67(3): 640-645.
- [45] He F F, Wang H Q, Wang Y Y, et al. Magnetic Th([V)-ion imprinted polymers with salophen schiff base for separation and recognition of Th([V)[J]. J Radioanal Nucl Chem, 2012, 295(1): 167-177.
- [46] Birlik E, Buyuktiryaki S, Ersoz A, et al. Selective separation of thorium using ion imprinted chitosanphthalate particles via solid phase extraction [J]. Sep Sci Technol, 2006, 41(14): 3109-3121.
- [47] Liu Y, Meng X, Luo M, et al. Synthesis of hydrophilic surface ion-imprinted polymer based on graphene oxide for removal of strontium from aqueous solution[J]. J Mater Chem A, 2015, 3(3): 1287-1297.
- [48] Liu Y, Gao J, Zhang Z, et al. A new Sr([]) ionimprinted polymer grafted onto potassium titanate whiskers : synthesis and adsorption performance for the selective separation of strontium ions[J]. Adsorpt Sci Technol, 2010, 28: 23-37.
- [49] Song Y, Ou H, Bian W, et al. Ion-imprinted polymers based on hollow silica with yeasts as sacrificial supports for Sr²⁺ selective adsorption[J]. J Inorg Organomet Polym Mater, 2013, 23(6): 1325–1334.
- [50] Pan J, Zou X, Yan Y, et al. An ion-imprinted polymer based on palygorskite as a sacrificial support

for selective removal of strontium(∏)[J]. Appl Clay Sci, 2010, 50(2): 260-265.

- [51] 李春香,潘建明,刘燕,等.凹凸棒石及其表面离子 印迹聚合物对水溶液中 Sr(Ⅱ)的吸附机制[J]. 硅 酸盐学报,2009,37:1705-1711.
- [52] 饶林峰. 辐射接枝技术的应用:日本海水提铀研究 的进展及现状[J]. 同位素,2012,25(3):129-139.
- [53] Rao L. Recent international R&D activities in the extraction of uranium from seawater LBNL Paper LBNL-4034E[R]. US: Lawrence Berkeley National Laboratory, 2011.
- [54] Kim J, Tsouris C, Mayes R T, et al. Recovery of uranium from seawater: a review of current status and future research needs [J]. Sep Sci Technol, 2013, 48(3): 367-387.
- [55] Shamsipur M, Fasihi J, Ashtari K. Grafting of ionimprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion [J]. Anal Chem, 2007, 79(18): 7116-7123.
- [56] Singh D K, Mishra S. Synthesis and characterization of UO₂²⁺-ion imprinted polymer for selective extraction of UO₂²⁺ [J]. Anal Chim Acta, 2009, 644 (1-2): 42-47.
- [57] Metilda P, Gladis J M, Venkateswaran G, et al. Investigation of the role of chelating ligand in the synthesis of ion-imprinted polymeric resins on the selective enrichment of uranium(VI)[J]. Anal Chim Acta, 2007, 587(2): 263-271.
- [58] 赵璇,李福志,张猛.低放废液处理技术研究进展 [C]//中国核学会核化工分会放射性三废处理、处 置专业委员会学术交流会论文集,2011.
- [59] Preetha C R, Gladis J M, Rao T P. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles[J]. Environ Sci Technol, 2006, 40: 3070-3074.
- [60] James D, Venkateswaran G, Prasada Rao T. Removal of uranium from mining industry feed simulant solutions using trapped amidoxime functionality within a mesoporous imprinted polymer material [J]. Microporous Mesoporous Mat, 2009, 119(1-3): 165-170.
- [61] Milja T E, Prathish K P, Rao T P. Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water[J]. J Hazard Mater, 2011, 188(1-3): 384-390.
- [62] Tavengwa N T, Cukrowska E, Chimuka L. Preparation, characterization and application of NaHCO₃ leached bulk U(VI) imprinted polymers endowed

with γ -MPS coated magnetite in contaminated water[J]. J Hazard Mater, 2014, 267: 221-228.

- [63] Chang X, Wang X, Jiang N, et al. Silica gel surface-imprinted solid-phase extraction of Zr(N) from aqueous solutions[J]. Microchim Acta, 2007, 162 (1-2): 113-119.
- [64] Ren Y, Liu P, Liu X, et al. Preparation of zirconium oxy ion-imprinted particle for the selective separation of trace zirconium ion from water [J]. J Colloid Interface Sci, 2014, 431: 209–215.
- [65] Zhang N, Hu B, Huang C Z. A new ion-imprinted silica gel sorbent for on-line selective solid-phase extraction of dysprosium(Ⅲ) with detection by inductively coupled plasma-atomic emission spectrometry[J]. Anal Chim Acta, 2007, 597(1): 12-18.
- [66] Uezu K, Kuwabara T, Yoshida M, et al. Lanthanoid element recognition on surface-imprinted polymers containing dioleylphosphoric acid as a functional host[J]. Anal Sci, 2004, 20: 1593-1597.
- [67] Vigneau O, Pinel C, Lemaire M. Solid-liquid separation of lanthanide-lanthanide and lanthanide-actinide using ionic imprinted polymer based on a DTPA derivative[J]. Chem Lett, 2002(2): 202-203.
- [68] Guo J, Cai J, Su Q. Ion imprinted polymer particles of neodymium: synthesis, characterization and selective recognition[J]. J Rare Earths, 2009, 27(1): 22-27.
- [69] Chauvin A-S, Bünzli J-C G, Bochud F, et al. Use of dipicolinate-based complexes for producing ionimprinted polystyrene resins for the extraction of yttrium-90 and heavy lanthanide cations [J]. Chem Eur J, 2006, 12(26): 6852-6864.
- [70] Sarabadani P, Payehghadr M, Sadeghi M, et al. Solid phase extraction of radioyttrium from irradiated strontium target using nanostructure ion imprinted polymer formed with 1-hydroxy-4-(prop-2-enyloxy)-9, 10-anthraquinone [J]. Appl Radiat Isot, 2014, 90: 8-14.
- [71] Sarabadani P, Sadeghi M, Payehghadr M, et al. Synthesis and characterization of a novel nanostructured ion-imprinted polymer for pre-concentration of Y(II) ions[J]. Anal Methods, 2014, 6(3): 741.
- [72] 赖晓绮,杨远奇,薛珺. 钇(Ⅲ)离子印迹聚合物的制 备及性能研究[J]. 化学学报,2009,67(8):863-868.
- [73] Zhang X, Ding C, Liu H, et al. Protective effects of ion-imprinted chitooligosaccharides as uraniumspecific chelating agents against the cytotoxicity of depleted uranium in human kidney cells[J]. Toxicology, 2011, 286(1-3): 75-84.