Search:


Diversity-oriented synthesis of Lycopodium alkaloids inspired by the hidden functional group pairing pattern

Jing Zhang, Jinbao Wu, Benke Hong, Wenying Ai, Xiaoming Wang, Houhua Li & Xiaoguang Lei*
Nat. Commun. 2014, 5, 4614

Natural products continue to provide a rich source of inspiration for both chemists and biologists. The efficient synthesis of bioactive natural products or natural product-like molecules has offered tremendous opportunities for complex biological processes exploration and drug discovery. However, because natural products usually contain numerous stereogenic centres and polycyclic ring systems, significant synthetic challenges remain. […]

Natural products continue to provide a rich source of inspiration for both chemists and biologists. The efficient synthesis of bioactive natural products or natural product-like molecules has offered tremendous opportunities for complex biological processes exploration and drug discovery. However, because natural products usually contain numerous stereogenic centres and polycyclic ring systems, significant synthetic challenges remain. Here we employ the build/couple/pair strategy that is frequently used in diversity-oriented synthesis to obtain skeletally diverse compounds with complexities comparable to natural products. Inspired by the functional group pairing patterns hidden in Lycopodium alkaloids, we efficiently and in parallel construct four natural products, (+)-Serratezomine A, (-)-Serratinine, (+)-8a-Hydroxyfawcettimine and (-)-Lycoposerramine-U, as well as six different unnatural scaffolds, following the advanced build/couple/pair algorithm. This newly developed strategy is expected to be applied to the efficient synthesis of other complex natural products possessing functional group pairing patterns as well as skeletally diverse natural product-like molecules.

3

pdfncomms5614